
The ‘analysis’ of a century: Describe the influence of published works and the 
attitudes of their authors on the etymological development of the word ‘analysis’ 
in a mathematical context to 1750 
  
A close assessment of William Oughtred’s Clavis Mathimaticæ of 1647, Isaac Newton’s De analysi per 
aequationes numero terminorum infinitas of 1669 and Leonard Euler’s Introductio ad analysin infinitorum of 
1748 will be used to examine the influence of published works on the etymological development of 
the word ‘analysis’ in a mathematical context in the century spanning their publication. 
 
This essay observes a gradual untethering of the word ‘analysis’ from its synthetic geometrical roots 
over the century. The analytic-synthetic distinction that this essay considers is what historians Otte 
and Panza term the ‘linguistic’ interpretation: “a mathematical argument or the formulation of a 
mathematical problem or proof is synthetic if it uses the language of classical geometry and of the 
theory of proportions. It is analytic if it uses the language of equations, functions or operations.”1 
Oughtred’s thinking, though predominantly algebraic, was still tied to geometry and his ‘analysis’ was 
motivated as a means by which ancient writers’ geometrical works could be understood. Newton’s 
De analysi made relations between continuously changing magnitudes the object of study and 
included infinite equations in a definition of ‘analysis’. However, Newton reverted to synthetic 
methods and this did much to stunt the development of analytic methods in England. Euler centred 
‘analysis’ around functions in his Introductio and was the first to stress an explicit distinction between 
the methods of geometry and algebra.2 
 
The authors’ attitudes towards analytic methods, their publication strategies, and the nature of their 
published works impacted the extent to which their definitions of ‘analysis’ were taken up. Despite 
the limited mathematical content of the Clavis, its nature as an accessible textbook and its illustrious 
support ensured the engagement of a generation of English scholars with Oughtred’s ‘analysis’. 
Newton was reluctant to publish De analysi until the emergence of a priority dispute, which limited 
the influence that the text had on the development of the word ‘analysis’, especially in light of the 
alignment of Newton’s publication strategy with his later wish to promote synthetic methods. Like 
Oughtred, Euler constructed a successful textbook, only the Introductio was far from limited in 
mathematical content. The fact that much of its contents and notation is familiar to students today is 
testament to its huge influence on the etymological development of the word ‘analysis’.  
 
“Analyticall furniture is no lesse precious then plenteous”3: the demonstrations and legacy of 
Oughtred’s Clavis  
 
In the wider mathematical setting of the Clavis, scholars in Northern Europe accessed classical 
mathematical texts, such as Pappus’ Collectio,4 which stimulated them to make their own 
advancements.5 In the narrower mathematical context, correspondences suggest that Oughtred had 
difficulty obtaining his European contemporaries’ texts. For example, he encountered Cavalieri’s 
methods in a letter from Paris, but was unable to purchase the original book.6 However, Oughtred 
became familiar with Viète’s ‘analytic art’ through neighbour Charles Cavendish, who collected 
mathematical manuscripts from 1617.7 It appears that Viète’s symbolical style so captured 
Oughtred’s imagination that he took as his mission the “inciting, assisting, and instructing [of] 
others”8 in the ‘analytic art’. Oughtred’s status as a clergyman meant that he was reluctant to publish, 
but he agreed to publish the Clavis because it could be justified as the manual by which he taught the 
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Earl of Arundel’s son.9 Oughtred’s motivation is explicit in the preface of the Clavis. He stated his 
aim “to direct [the readers] for the more easie and full understanding of the best and antientest 
Authors”10 and explains that the Clavis is “not written in the usuall syntheticall manner … but in the 
inventive way of Analitice.”11 In summary, Oughtred was eager to teach ‘analysis’, as he understood 
it, to enable his readership to understand ancient writers’ works. 
 
To uncover the meaning of ‘analysis’ in the Clavis, I consider the contents of the 1647 edition. In the 
first chapter Oughtred defined the ‘analytic art’ as the process “in which by taking the things sought 
as knowne, we finde out that we seeke”12 and explained that it shows “the processe of the whole 
worke: and so does not onely resolve the question in hand; but also teach a generall Theoreme.”13 
The first ten chapters outlined the operations and notation that Oughtred went on to employ. The 
following chapters contained numerical and algebraic examples including binomial expansions 
(Oughtred’s ‘Potesates’) to square and cube quantities, root extraction methods and equation-solving 
rules. Chapter eighteen, “The Analytical Store”, supplied “Analyticall furniture” (algebraic 
expressions) which readers could employ, and were encouraged to invent, to solve problems. 
Chapter nineteen, at which content delivered previously “do[es] principally aime”,14 gave Euclidean 
propositions in an algebraic form. I consider the first problem of this chapter which is “the invention 
of [11 e 2]”15: the twelfth proposition of the second book of Euclid. This, as Oughtred explained, 
requires one “to cut B a Right line given, so that the Rectangle under the whole B, and the lesser 

segment, may be equall to the Quadrat of the greater Segment.”16 Oughtred split a line B into 

sections A (the longer) and 𝐵 − A, set up the equation “Bq − BA = Aq”17 and proceeded to solve 

for A, employing a result from the fourteenth chapter that considered the sums and differences of 
squares of algebraic quantities. Oughtred next illustrated that the solution is “geometrically effected 

thus.”18 He drew AB of length B and constructed CB perpendicular to AB of length 𝐵 2⁄ . Utilising 

Pythagoras’ Theorem, he obtained the length AC and subtracted CD = BC to obtain the correct 

length for A by measuring AE = AD. For this problem he included the diagram below,19 but some 
results from Euclid were expressed in purely algebraic form: a new departure in an elementary text. 

 

 
The Clavis taught that mathematics ought to be pursued ‘analytically’, which meant for Oughtred as 
for Viète that mathematical problems ought to be translated into symbolical equations and then 
solved algebraically. Whereas Viète had written philosophically of the ‘analytic art’, Oughtred tried to 
introduce it to young mathematicians.20 Despite his use of at least 150 different symbols, his 
explanations had a geometric character. One concludes that Oughtred’s ‘analysis’ was a powerful 
method for solving problems, predominantly geometrical problems, that left written traces21 that 
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could “teach a generall Theoreme.” The importance ascribed to Euclid meant that ‘analysis’ was 
characterized as both forward- and backward-looking in the Clavis. 
 
The Clavis’ success in England cannot be attributed to the results that it contained but largely to its 
nature as an accessible textbook with no competitor.22 In Europe most basic algebra texts were new 
editions of sixteenth-century works. Moreover, of the 24 mathematicians who published new books 
between 1600 and 1630, two-thirds wrote in their own language and the books in Latin lacked clarity 
of expression.23 The Clavis filled the vacuity that existed between the poor quality or foreign language 
elementary texts and the inaccessible works of Viète and followers.24 Its success was aided by its long 
list of illustrious supporters. For example, John Wallis, a pupil of Oughtred, insisted on the printing 
of the fourth and final editions and on its use well beyond the forty years it had been in circulation. 
Its value in teaching received recognition by Newton, who recommended it as a course of study at 
Christ’s Hospital25 and Edmund Halley, who remarked that it “may be of good use to all beginners in 
the Analytical Art.”26 Jonas Moore said “I owe all the Mathematicall knowledge I have [to the 
Clavis].”27 Such accounts resulted in the Clavis being remembered long after the original grounds for 
its existence were forgotten. 
 
Wielding a weapon or lifting a burden? The impact of changing attitudes to analytic 
mathematical methods in the works of Isaac Newton 
 
Newton annotated books by Descartes, Viète, van Schooten, Oughtred and Wallis in the 1660s28 and 

thus found himself at an intersection of new and old ideas about ‘analysis’. The approach that 

Oughtred pioneered was continued in England by mathematicians such as John Pell and John 

Collins.29 Young Newton saw himself as part of this tradition and his annotations to Oughtred and 

Viète and his support of the Clavis showed his interest. Newton’s introduction to the new kind of 

‘analysis’, which dealt with the infinite and the infinitesimal, was largely through Wallis, most notably 

through his 1656 Arithmetica Infinitorum.30 

 

To understand Newton’s concept of the new ‘analysis’, I consider the contents of De analysi, the key 

demonstrations of which include finding areas beneath curves; lengths of curves; infinite polynomials 

and their applications; the general binomial theorem; the numerical solution of equations and a 

foreshadowing of Newton’s calculus. De analysi opened with rules detailing how to resolve quadrature 

problems: “rather briefly explained than narrowly demonstrated.”31As is thematic, Newton stated 

that “the matter will be evident by example”32 and guided readers through applications. Newton had 

discovered the general binomial theorem around 1664, drawing inspiration from Oughtred’s 

“Analyticall Table”33 and applying a Wallisian interpolation technique to obtain his infinite series. 

Despite having no rigorous process to justify the convergence of such series, Newton seldom erred. 

De analysi included a treatment of Newton’s ‘fluxions’ and indeed, infinite series were inextricably 

linked with calculus for Newton, as indicated by their combination in Newton’s 1671 treatise Method 

of fluxions and infinite series. At the end of De analysi, Newton noted: “two points stand out … as 
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needing proof.”34 Newton justified his first quadrature rule using a new limit-style proof that makes 

the modern reader uncomfortable: he divides by the ‘momentary increment’ 𝑜 and later lets “𝑜 to be 

zero.”35 Contrastingly, his second justification employs the help of the classical ‘Eudoxean’ axiom of 

the Elements.36 This appeal to Euclid and the plethora of diagrams in the text renders the analytic-

synthetic distinction in the text not quite clear.                                           

 

Like the Clavis, the ‘analysis’ of De analysi is centred around equations but Newton placed the 

emphasis on relationships between continuously changing magnitudes37 and extended equations to 

infinite equations: stating that he “never hesitated to bestow on [them] the name of analysis.”38 

Whewell wondered “what manner of man [Newton] was who could wield as a weapon what we can 

hardly lift as a burden.”39 Initially, Newton thought his new ‘analysis’ to be a powerful “weapon”. 

Some agreed: in 1745 Professor John Stewart went as far as explaining that the “Method of 

Exhaustions … [is] the first Step towards the general Method of Quadratures and of the converging 

Series lately introduced”40: rooting Newton’s methods in undisputed classical ones. There were also 

doubts: Cantor observed that “[t]he [method] is just described, not proven.”41 Newton carried a 

“burden”: he struggled to reconcile his philosophical agenda with his mathematical practice.42 

Printing algebraic, heuristic methods would expose Newton to criticism when he wanted certainty, 

and this was guaranteed by geometry. The algebraic ‘analysis’, he told Gregory, was “unfit to consign 

to writing and commit to posterity.”43 Newton structured his 1704 work on cubics, the Enumeratio, in 

a way that did not use analytic methods explicitly.44 The Principia showcased his synthetic method of 

fluxions,45 but in places he appealed to quadrature techniques that belonged to his new ‘analysis’. 

This was noted by Montcula, who said: “the calculus surfaces through a concealment with which 

Newton hides it.”46 Those who understood Newton’s proofs were frustrated. In reference to the 

impact of Newton’s reversion to synthetic methods, Struik observed that “the tradition of the 

venerated Newton rested heavily upon English science.”47 Whilst many of Newton’s followers 

sought, and struggled, to preserve a synthetic way of thinking,48 Continental mathematicians had a 

fruitful period developing the new ‘analysis’,49 of which Newton was originally a proponent.  

 

An assessment of the significance of De analysi on the development of the word ‘analysis’ is 

complicated by the fact that it was only published in 1711, motivated in part by the priority dispute 

with Leibniz. Newton’s teacher Barrow sent the work to philomath Collins in 1669, who could not 

convince Newton to publish.50 This was typical of Newton’s early works and stunted their impact. 

Most notably, in 1684 David Gregory sent his Exercitatio geometrica de dimensione figurarum to Newton, 
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which showed Gregory had discovered several series quadrature theorems found in De analysi.51 As 

historian Love remarks, Newton’s strategy of circulating his texts to a small circle of mathematicians 

can be described as “scribal publication”, which contains the idea that “the power to be gained from 

the text was dependent upon possession of it being denied to others.”52 This strategy ensured that 

Newton had control over the dissemination of his ideas but caused problems: his career was riddled 

with priority disputes and arguably late eighteenth-century European mathematics would have been 

different had Newton published his innovative infinite series earlier.53 

 
Euler’s Introductio: The manifesto of a new mathematical discipline?  
 

Euler was a “mathematical omnivore”54 and his exploration of much of the mathematics existing at 

the time gave him a unique view of the architecture of the subject. This led to his identification of 

opportunities for generalisation. In eighteenth-century Europe calculus was viewed as both useful 

and vulnerable: there were particular concerns with the employment of infinite and infinitesimal 

quantities. For example, Euler warned that the methods in Newton’s early works were “ in danger of 

plunging into manifest contradiction.”55 Euler’s preface to the Introductio explained that, to eradicate 

the “manifest contradiction” that he found in Newton and others’ ‘analysis’, he would introduce 

topics “absolutely required for analysis”56 so that the reader “almost imperceptibly becomes 

acquainted with the idea of the infinite.”57  

 

The Introductio’s focus is apparent from the first chapter’s title: “On Functions in General.”58 For 

Euler, functions were the objects of ‘analysis’ and the first chapter aimed to introduce and account 

for them.59 Euler began with definitions, including that: “A function of a variable quantity is an 

analytic expression composed in any way whatsoever of the variable quantity and numbers or 

constant quantities.”60 Here, Euler’s “analytic expression” is a formula constructed from variables in 

finitely many steps using algebraic and transcendental operations and composition of functions.61 

D’Alembert’s 1747 derivation of the wave equation forced Euler to reassess what kind of functions 

were permissible. Most importantly, though, is Euler’s attempt to move to a general theory and the 

change from curves to functions as the objects of ‘analysis’. The generality of Euler’s functions 

inspired their application. Indeed, for most of the nineteenth century the definition of a function as 

an expression was still present, for example in Eduard Heine’s 1872 Die Elemente der Functionenlehre,62 

though by now multiple values had been eliminated.63  

 

Euler turned to “the development of Functions in Infinite Series”64 in chapter four. Euler motivated 

this by stating that infinite series are the “best form for the mind to grasp [the] nature [of 
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functions].”65 Euler attempted to convince the reader that any function could be expressed by an 

infinite series by showing how to expand any algebraic function as well as various transcendental 

functions into such a series. His methods for algebraic functions were not new, being a combination 

of Newton’s methods using division and the binomial theorem.66 The power of series methods in 

Euler’s hands is revealed in the seventh chapter: “Exponentials and Logarithms Expressed through 

Series.”67 His techniques would now be frowned upon as they utilised infinite and infinitesimal 

quantities. Despite this, like Newton, he rarely erred. In §114,68 he noted that since  𝑎0 = 1, it 

follows that 𝑎𝜔 = 1 + Ψ, where both 𝜔 and Ψ are infinitely small and so that “with 𝑎 as the base 

for the logarithm, we have 𝜔 = log (1 + 𝑘𝜔).” He later noted that, for any 𝑗, 𝑎𝑗𝜔 = (1 + 𝑘𝜔)𝑗 , 

and employed the binomial theorem to get a series for 𝑎𝑗𝜔. He let 𝑗 =
𝑧

𝜔
 and noted that as “𝑧 

denotes any finite number, since 𝜔 is infinitely small, then 𝑗 is infinitely large.”69 The series then 

became: 

𝑎𝑧 = 1 +
1

1
𝑘𝑧 +

1(𝑗 − 1)

1 ∙ 2𝑗
𝑘2𝑧2 +

1(𝑗 − 1)(𝑗 − 2)

1 ∙ 2𝑗 ∙ 3𝑗
𝑘3𝑧3 + ⋯ 

Noting that “since 𝑗 is infinitely large, 
𝑗−1

𝑗
= 1”70 and by similar logic, Euler arrived at 

𝑎𝑧 = 1 +
𝑘𝑧

1
+

𝑘2𝑧2

1 ∙ 2
+

𝑘3𝑧3

1 ∙ 2 ∙ 3
+ ⋯ 

where 𝑘 depends on the base 𝑎. In §119,71 by applying the binomial theorem, he derived an infinite 

series for log(1 + 𝑥). In §12272 he does what the modern reader anticipates: the base of his 

logarithm is chosen so that 𝑘 = 1, and the symbol 𝑒 is introduced for the base of his “natural 

logarithm.”73 It is hard to imagine a mathematics course on ‘analysis’ today without these concepts.  

 

Also significant in the Introductio is the derivation of the power series for sine and cosine, starting 

from the identity 𝑠𝑖𝑛 2(𝑥) + 𝑐𝑜𝑠2(𝑥) = 1. Before this, there was no sense of the trigonometric 

functions being expressed as formulas involving letters and numbers, whose relationship to other 

such formulas could be studied.74 Euler unified elementary functions: he substituted 𝑧 = 𝑖𝑣 and 𝑧 =

−𝑖𝑣 into the identity (1 +
𝑧

𝑗
)𝑗 derived at the end of the seventh chapter to obtain 

𝑒𝑖𝑣+𝑒−𝑖𝑣

2
= cos 𝑣 

and 
𝑒𝑖𝑣−𝑒−𝑖𝑣

2𝑖
= sin 𝑣 and so illustrated how trigonometric functions were related to the exponential 

function just introduced.  

 

One must consider that Euler had no notion of a limit or of an infinitesimal approximation and did 

not justify all of his conclusions in formal terms or offer a proof for every result. For example, he 

applied Newton’s generalized binomial theorem without providing a proof for it.75 Nevertheless, the 

Introductio should be praised highly for its structural character, the impressive range and quality of its 

results, and its achievement in uniting fundamental mathematical material. Whilst quantifying the 
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influence of the Introductio is difficult, the book was reprinted several times in the eighteenth century 

and was translated into French and German76 and it is doubtful that any other essentially didactic 

work includes as large a portion of original material which survives in the mathematics courses of 

today.77  

 

Conclusion 

 

Oughtred’s Clavis demonstrated that his symbolical ‘analysis’ was “precious” as an illustrative method 
to solve (predominantly geometric) problems to its readership and its impact on their notion of 
‘analysis’ was “plenteous”: more as a result of its success as a textbook than as a result of it being a 
radical mathematical work. The success of the Clavis ensured that Oughtred’s successors harboured 
few worries about the legitimacy of the symbolical style and also that there would no longer be an 
exclusively geometric tradition in English mathematics; there would also be a parallel analytic one.  
 
Newton was initially keen to continue the approach to ‘analysis’ that Oughtred pioneered and in his 

youth expanded the definition of ‘analysis’ to include methods that dealt with infinite and 

infinitesimal quantities. His initial disinclination to publish limited the influence that De analysi could 

have had on shaping the meaning of ‘analysis’. His later reversion to geometry, and the structuring of 

his publication strategy around this agenda, convinced some mathematicians, especially in England, 

that Oughtred’s symbolical approach was unfit for publication and that synthetic methods were to be 

employed to guarantee certainty. By the second half of the eighteenth century this had led to a divide 

between the ‘analysis’ found in Europe that was in the process of divorcing its geometrical roots78 

and the attempt to preserve synthetic methods in England.  

 
Euler sought to eradicate the “manifest contradiction” that he found in the analytic methods of 

young Newton and others with his textbook, the Introductio. Euler’s ‘analysis’ comes close to the 

modern discipline, that is the study of functions by means of infinite processes, especially through 

infinite series. Euler restructured and unified mathematics by placing ‘analysis’, which was devoid of 

diagrams and entirely distinct from geometry, at its heart. It is for these reasons that Euler has been 

referred to as “analysis incarnate”79 and that the Introductio can be considered as the manifesto of 

‘analysis’ as an autonomous mathematical discipline.  
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